
1

CourierData API – Full Developer Guide (v1.0.0)
Document purpose: This guide provides an end‑to‑end narrative for developers,
QA engineers, solution architects, and technical writers who need to integrate
with, test, or document the CourierData REST API. It blends formal specification
with practical, field‑tested advice so you can copy this directly into a Word
document and export to PDF without further editing.

Table of Contents
1. Executive Summary
2. At‑a‑Glance
3. Base URLs & Environments
4. Authentication
5. Common HTTP Conventions
6. Media Types & Character Encoding
7. Idempotency, Safety & Caching
8. Rate Limiting & Fair Use
9. Resources Overview
10. Endpoints

o GET /couriers/list
o GET /couriers/details/{id}

11. Data Models
o Courier
o CourierDetails

12. Errors & Problem Handling
13. Security Considerations
14. Observability & Diagnostics
15. Testing, Mocking & Tooling
16. Versioning & Deprecation Policy
17. Change Log
18. FAQ
19. Glossary
20. Appendix A: Full Swagger (OpenAPI 2.0)

2

Executive Summary

The CourierData API provides read-only access to courier identities and their extended
details. Version 1.0.0 ships with two HTTP GET resources:

• GET /couriers/list – returns a collection of couriers with high-level identity fields
(ID, first name, last name).

• GET /couriers/details/{id} – returns an extended record for a single courier (ID,
address, salary).

This initial version prioritizes simplicity, predictability, and low onboarding friction.
Authentication is via HTTP Basic and, while the sample host uses
http://localhost:8080, deployments SHOULD run behind HTTPS in production.
Responses are JSON by default; XML element names are also provided in the schema
metadata for teams that prefer XML representations.

Who should read this? Engineers building internal dashboards, integration
services, ETL jobs, reporting utilities, and QA harnesses will find this guide
practical. Architects will appreciate the sections on conventions, security, and
lifecycle management.

At‑a‑Glance
• Specification: Swagger (OpenAPI 2.0)
• Title: CourierData
• Version: 1.0.0
• Base Path: /rest/courierdata/v1
• Host: localhost:8080 (example; replace per environment)
• Schemes: http (HTTPS recommended in production)
• Security: basicAuth (HTTP Basic)
• Resources: couriers

Base URLs & Environments

Although the specification lists localhost:8080 for local development, typical
deployments separate environments:

Environment Base URL (example)
Local http://localhost:8080/rest/courierdata/v1

Dev https://dev.example.com/rest/courierdata/v1

QA https://qa.example.com/rest/courierdata/v1

3

Environment Base URL (example)
Prod https://api.example.com/rest/courierdata/v1

Note: The path always includes the version segment /v1. Client applications
SHOULD treat the base path as immutable within a major version.

Authentication

The API uses HTTP Basic Authentication. Provide a valid username and password in the
Authorization header.

Authorization: Basic <base64(username:password)>

• When authentication fails, the server returns 401 Unauthorized and includes a
WWW-Authenticate header describing the scheme.

• Credentials SHOULD be transmitted over TLS (HTTPS). Avoid sending credentials
over plain HTTP outside isolated development setups.

Example (cURL)

curl -u myuser:mypassword \
 "https://api.example.com/rest/courierdata/v1/couriers/list"

Common HTTP Conventions
• Methods: All resources in v1 are GET and are therefore safe and idempotent.
• Status Codes: 200 on success, 401 on failed authentication. (Future versions may

extend this set.)
• Headers: Standard HTTP headers (Accept, Content-Type, Authorization) apply.
• Case Sensitivity: Header names are case-insensitive. Field names in JSON are

case-sensitive.
• Time: This API does not return timestamps in v1. If introduced later, the canonical

format will be ISO‑8601 with timezone designator (e.g., 2025-09-12T09:27:00Z).

Media Types & Character Encoding
• Default: application/json; charset=utf-8
• Alternative: XML is conceptually supported (XML names are present in the

schema), but JSON is the reference format in examples.
• Clients SHOULD set the Accept header explicitly when requesting non-default

formats.

4

Idempotency, Safety & Caching
• Idempotency: All GET operations are idempotent—repeating calls yields the same

outcome absent underlying data changes.
• Caching: No caching headers are defined in v1. Consumers MAY introduce client-

side caching with sensible TTLs where appropriate.
• Retries: Transient network failures MAY be retried with exponential backoff (e.g.,

1s, 2s, 4s, capped at 30s).

Rate Limiting & Fair Use

There is no explicit rate limit documented for v1. As a professional courtesy: - Keep request
rates under 10 RPS for shared environments unless instructed otherwise. - Batch reads
rather than polling aggressively.

Tip: If you anticipate high-volume access, coordinate with the platform team to
ensure capacity planning and to obtain dedicated credentials.

Resources Overview

The couriers tag groups two endpoints:

1. List Couriers — returns a lightweight list of courier identities.
2. Courier Details — returns in-depth information for a single courier by numeric ID.

These endpoints are intentionally orthogonal: the list is optimized for browsing and
selection; details are optimized for profile views and single‑record processing.

Endpoints

GET /couriers/list

Summary: Retrieve all couriers with minimal identity attributes.

HTTP

GET {BaseURL}/couriers/list

Query Parameters: None in v1.

Authentication: Required (Basic).

Responses - 200 OK — Array of Courier objects. - 401 Unauthorized — Missing or invalid
credentials. Header WWW-Authenticate present.

5

Example Request (cURL)

curl -i -u myuser:mypassword \
 "https://api.example.com/rest/courierdata/v1/couriers/list"

Example Response (200, JSON)

[
 {"_ID": 101, "Firstname": "Ava", "Lastname": "Turner"},
 {"_ID": 102, "Firstname": "Liam", "Lastname": "Ng"},
 {"_ID": 103, "Firstname": "Maya", "Lastname": "Khan"}
]

Example Response (200, XML)

<Couriers>
 <Courier>
 <_ID>101</_ID>
 <Firstname>Ava</Firstname>
 <Lastname>Turner</Lastname>
 </Courier>
 <Courier>
 <_ID>102</_ID>
 <Firstname>Liam</Firstname>
 <Lastname>Ng</Lastname>
 </Courier>
 <Courier>
 <_ID>103</_ID>
 <Firstname>Maya</Firstname>
 <Lastname>Khan</Lastname>
 </Courier>
</Couriers>

Notes & Best Practices - The list may be large in production contexts. Implement
pagination in your UI even though v1 returns the full set, to future‑proof for server-side
paging. - Treat _ID as an opaque numeric identifier. Do not infer business meaning from
the number itself.

GET /couriers/details/{id}

Summary: Retrieve the extended profile for a single courier.

HTTP

GET {BaseURL}/couriers/details/{id}

Path Parameters - id (required, integer) — Unique numeric identifier of the courier.

Authentication: Required (Basic).

6

Responses - 200 OK — CourierDetails - 401 Unauthorized — Missing or invalid
credentials. Header WWW-Authenticate present.

Example Request (cURL)

curl -i -u myuser:mypassword \
 "https://api.example.com/rest/courierdata/v1/couriers/details/101"

Example Response (200, JSON)

{
 "_ID": 101,
 "Address": "221B Baker Street, London NW1 6XE, UK",
 "Salary": "€45,000"
}

Example Response (200, XML)

<Courier>
 <_ID>101</_ID>
 <Address>221B Baker Street, London NW1 6XE, UK</Address>
 <Salary>€45,000</Salary>
</Courier>

Validation & Edge Cases - id must be a positive integer. Non‑numeric or negative values
will not match the route and will be rejected by the server/router. - If a record does not exist
for a given id, the server’s behavior in v1 is undefined by the formal spec. Implement
defensive handling in clients to treat unexpected non‑200 responses as errors.

Data Models

Courier

A lightweight identity record.

Field Type Format Notes
_ID integer int64 System‑generated primary key.
Firstname string — Given name of the courier.
Lastname string — Family/surname of the courier.

JSON Schema (excerpt)

{
 "title": "Courier",
 "type": "object",
 "properties": {
 "_ID": { "type": "integer", "format": "int64" },
 "Firstname": { "type": "string" },

7

 "Lastname": { "type": "string" }
 }
}

CourierDetails

An extended profile with HR/administrative attributes.

Field Type Format Notes
_ID integer int64 Matches the

courier’s identity
_ID.

Address string — Free‑form mailing
address. Consider
normalizing in
consuming systems
if needed.

Salary string — Human‑readable
salary figure
including currency
symbol. Not
intended for
arithmetic without
parsing.

JSON Schema (excerpt)

{
 "title": "Courier",
 "type": "object",
 "properties": {
 "_ID": { "type": "integer", "format": "int64" },
 "Address": { "type": "string" },
 "Salary": { "type": "string" }
 }
}

Design Note: Salary is modeled as a string in v1 to preserve formatting and avoid
localization drift. Consumers that require numeric analysis SHOULD parse
currency and amount explicitly.

8

Errors & Problem Handling

The API explicitly documents 401 Unauthorized as a common error when authentication
fails or is absent.

401 Unauthorized - Headers: WWW-Authenticate: Basic realm="CourierData" - Body:
Implementations may return an empty body or a simple diagnostic structure.

Example (401)

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="CourierData"
Content-Type: application/json; charset=utf-8

{"error":"unauthorized","message":"Authentication information is missing or
invalid"}

Operational Tip: Ensure your client sets the Authorization header on every
request. Some HTTP libraries do not resend credentials automatically on
redirects.

Security Considerations
• Transport Security: Always use HTTPS outside local development. Basic Auth

credentials are otherwise exposed to the network.
• Secrets Handling: Do not hardcode credentials in source control. Use environment

variables or secret managers.
• Least Privilege: Create dedicated credentials per application and environment. E.g.

• Logging: Avoid logging full URLs that include credentials (e.g.,

https://user:pass@host/...).

Observability & Diagnostics
• Correlation IDs: While not mandated in v1, clients MAY include a header such as X-

Correlation-Id: <uuid> to trace requests across services.
• Timestamps: Client logs SHOULD record request start/stop times, status codes,

and payload sizes for performance baselining.
• Health Checks: There is no public health endpoint in v1. Use application‑level

canaries where necessary.

https://user:pass@host/

9

Testing, Mocking & Tooling
• cURL for quick, scriptable calls (examples above).

• HTTPie for readable CLI testing:

 http -a myuser:mypassword GET
https://api.example.com/rest/courierdata/v1/couriers/list

• Postman/Insomnia: Import the Swagger (see Appendix A) to auto‑generate
requests.

• Mocks: If you need deterministic data for UI development, record sample
responses and serve via a mock server (e.g., WireMock).

Versioning & Deprecation Policy
• Semantic Versioning: The API follows MAJOR.MINOR.PATCH. This document covers

1.0.0.
• URL Versioning: /v1 is part of the base path; breaking changes will appear under

/v2.
• Deprecation: If fields or endpoints are deprecated in a MINOR release, they will be

maintained for at least one full MINOR cycle with warnings before removal in the
next MAJOR version.

Change Log
• 1.0.0 – Initial public availability with two endpoints: list and details.

FAQ

Q: Does /couriers/list support filtering or sorting?
A: Not in v1. Clients should filter/sort locally. This keeps server behavior stable while usage
patterns mature.

Q: Why is Salary a string instead of a number?
A: Formatting and currency symbols vary. A string preserves intent and avoids locale
issues. Parse it when numerical operations are required.

Q: Will there be POST/PUT/PATCH endpoints?
A: Possibly in a future major version. v1 is intentionally read‑only to simplify governance
and access control.

10

Q: Is XML supported?
A: The schema provides XML names, and examples are shown. JSON remains the
canonical, fully supported representation in v1.

Glossary
• Basic Auth: An HTTP auth scheme transmitting a Base64‑encoded

username:password pair in the Authorization header.
• Idempotent: An operation that can be applied multiple times without changing the

result beyond the initial application.
• Resource: A logical entity exposed by the API (e.g., Courier).

Appendix A: Full Swagger (OpenAPI 2.0)
{
 "swagger": "2.0",
 "info": {"title": "CourierData", "version": "1.0.0"},
 "host": "localhost:8080",
 "basePath": "/rest/courierdata/v1",
 "schemes": ["http"],
 "paths": {
 "/couriers/list": {
 "get": {
 "tags": ["couriers"],
 "responses": {
 "200": {
 "description": "successful operation",
 "schema": {
 "items": {"$ref": "#/definitions/Courier"},
 "xml": {"name": "Couriers"},
 "type": "array"
 }
 },
 "401": {"$ref": "#/responses/UnauthorizedError"}
 }
 }
 },
 "/couriers/details/{id}": {
 "get": {
 "tags": ["couriers"],
 "parameters": [
 {"name": "id", "in": "path", "required": true, "type": "integer"}
],
 "responses": {
 "200": {
 "description": "successful operation",

11

 "schema": {"$ref": "#/definitions/CourierDetails", "xml":
{"name": "Couriers"}}
 },
 "401": {"$ref": "#/responses/UnauthorizedError"}
 }
 }
 }
 },
 "definitions": {
 "Courier": {
 "title": "Courier",
 "xml": {"name": "Courier"},
 "type": "object",
 "properties": {
 "_ID": {"type": "integer", "format": "int64"},
 "Firstname": {"type": "string"},
 "Lastname": {"type": "string"}
 }
 },
 "CourierDetails": {
 "title": "Courier",
 "xml": {"name": "Courier"},
 "type": "object",
 "properties": {
 "_ID": {"type": "integer", "format": "int64"},
 "Address": {"type": "string"},
 "Salary": {"type": "string"}
 }
 }
 },
 "responses": {
 "UnauthorizedError": {
 "description": "Authentication information is missing or invalid",
 "headers": {"WWW-Authenticate": {"type": "string"}}
 }
 },
 "securityDefinitions": {"basicAuth": {"type": "basic"}},
 "security": [{"basicAuth": []}],
 "tags": [{"name": "couriers", "description": ""}]
}

Final Notes for Document Consumers
• You can paste this entire guide into Word. The tables and code blocks preserve well

when using a monospaced font for code (e.g., Consolas).
• Before publishing externally, replace example domains with your real endpoints and

scrub any environment‑specific secrets from snippets.

